Prime Factorization Calculator

Prime Factorization
Prime factorization is a mathematical process in which an integer is expressed as the product of prime numbers. This method allows any number to be represented as a unique combination of prime factors, which is useful in various mathematical, engineering tasks, and cryptography.
Enter a number

Prime Number – is a natural number greater than one that has exactly two distinct positive divisors: one and the number itself. In other words, prime numbers are divisible only by 1 and themselves. Examples of prime numbers include 2, 3, 5, 7, 11, and so on.

Composite Number - is a natural number greater than one that has more than two positive divisors. In other words, composite numbers are divisible not only by 1 and themselves but also by other numbers. Examples of composite numbers include 4 (divisible by 1, 2, and 4), 9 (divisible by 1, 3, and 9), 15 (divisible by 1, 3, 5, and 15), and so on. Unlike prime numbers, composite numbers have a broader set of divisors, and they do not have the property of having exactly two positive divisors.

Table of prime numbers up to 1000

23571113171923293137
414347535961677173798389
97101103107109113127131137139149151
157163167173179181191193197199211223
227229233239241251257263269271277281
283293307311313317331337347349353359
367373379383389397401409419421431433
439443449457461463467479487491499503
509521523541547557563569571577587593
599601607613617619631641643647653659
661673677683691701709719727733739743
751757761769773787797809811821823827
829839853857859863877881883887907911
919929937941947953967971977983991997

Table of composite numbers up to 1000

46891012141516182021
222425262728303233343536
383940424445464849505152
545556575860626364656668
697072747576777880818284
858687889091929394959698
99100102104105106108110111112114115
116117118119120121122123124125126128
129130132133134135136138140141142143
144145146147148150152153154155156158
159160161162165165166168169170171172
174175176177178180182183184185186187
188189190192194195196198200201202203
204205206207208209210212213214215216
217218219220221222224225226228230231
232234235236237238240242243244245246
247248249250252253254255256258259260
261262264265266267268270272273274275
276278279280282284285286287288289290
291292294295296297298299300301302303
304305306308309310312314315316318319
320321322323324325326327328329330332
333334335336338339340341342343344345
346348350351352354355356357358360361
362363364365367368390391392393394395
396398400402403404405406407408410411
412413414415416417418420422423424425
426427428429430432434435436437438440
441442444445446447448450451452453454
455456458459460462464465466468469470
471472473474475476477478480481482483
484485486488489490492493494495496497
498500501502504505506507508510511512
513514515516517518519520522524525526
527528529530531532533534535536537538
539540542543544545546548549550551552
553554556558559560561562564565567568
572573574575576577578579580581582583
584585586587588589590591592594595596
597598600602603604605606608609610611
612614615616618620621622623624625626
627628629630632633634635636637638639
640642644645646648649650651652654655
656657658660662663664665666667668669
670671672674676678679680681682684685
686687688689690692693694695696697698
699700702703704705706707708710711712
713714715716717718720721722723724725
726728729730731732734735736737738740
741742744745746747748749750752753754
755756758759760762763764765766767768
770771772774775776777778779780781782
783784785786788789790791792793794795
796798799800801802803804805806807808
810812813814815816817818819820822824
825826828830831832833834835836837838
840841842843844845846847848849850851
852854855856858860861862864865865866
867868869870871872873874875876878879
880882884885886888889890891892893894
895896897898899900901902903904905906
908909910912913914915916917918920921
922923924925926927928930931932933934
935936938939940942943944945946948949
950951952954955956957958959960961962
963964965966968969970971972973974975
976978979980981982984985986987988989
9909929939949959969989991000

Comments on the calculator

Number of comments: 1
19.11.2023
Mariya

I didn't get prime factorization at first, but this made it clear. Thumbs up!

Similar calculators
Mathematics Combination Calculator

The combinations calculator helps you determine the count of potential combinations from a specified number of objects, denoted as "n choose k."

Go to calculation
Mathematics Bernoulli Trial

A Bernoulli trial is a random experiment with two possible outcomes, typically labeled as "success" and "failure".

Go to calculation
Mathematics Permutations

The permutations calculator calculates the number of possible arrangements of a given number of objects n taken k at a time.

Go to calculation